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Abstract—Edge Point of Care (POC) devices are crucial for
human activity recognition (HAR) and fall detection because they
enable real-time analysis and fast intervention, which can greatly
improve outcomes in situations of patient and elderly monitor-
ing. The emergence of Artificial Intelligence (AI) has sparked
renewed enthusiasm for integrating AI algorithms into low-
power embedded systems, broadening the potential applications
of the POC devices. This paper introduces HAC-POCD, a system
for multimodal human activity recognition and fall detection
that processes different modalities of complementary images,
designs deep neural network (DNN) models, and employs model
compression techniques including knowledge distillation and low
bit-width quantization with memory-aware considerations to fit
models within lower memory hierarchy levels, reducing latency
and enhancing energy efficiency on resource-constrained edge
devices. With compact inference model of 58 KB, we achieved
95.6% accuracy on HAR case-study. Our compact inference
model, deployed on resource constrained hardware, GAPuino and
Raspberry Pi 4, demonstrated low latencies within milliseconds
and very high energy efficiency.

Index Terms—Multimodal Neural Networks, Model Compres-
sions, Human Activity Recognition, Fall Detection, Edge POC
Devices

I. INTRODUCTION

The surge in the aging population and a renewed empha-
sis on fitness have catalyzed progress in Human Activity
Recognition (HAR) and fall detection technologies [1], [2].
These innovations are pivotal in elder care, healthcare, sports
coaching, rehabilitation, and beyond. Notably, rapid fall de-
tection, especially for the elderly, can greatly mitigate the
risk of serious injuries [3]. Deep neural networks, crucial
in diverse sectors like robotics [4], [5], healthcare [6], [7],
and automation [8], are pushing boundaries of what machines
can perceive and achieve. Traditional HAR and fall detec-
tion integrate wearable and ambient sensors with machine
learning to discern activities and identify falls. However,
while advancements are noteworthy, real-world applications
face hurdles, particularly in computational overhead and en-
ergy use. The promise of multimodal deep neural networks
(M-DNN), which can assimilate diverse data streams, of-
ten remains untapped in edge devices [9], [10]. Potentials
of multimodal deep neural networks (M-DNN), processing
multiple modalities of complementary data are thus ignored
for edge device deployment. Because implementing M-DNN
models in resource-limited edge machine learning applications
is challenging due to the growing number of model parameters
and computations. Recently, ARIS [11], CoughNet-V2 [12],

TinyM2Net [13], OMAD [14], RhythmEdge [15] and authors
in [16]–[18] implemented various optimized unimodal and
multimodal neural networks on different edge devices and tiny
devices.

In this paper, we tackle the challenge of implementing M-
DNN models for HAR and Fall detection on various resource-
constrained point-of-care (POC) hardware. To achieve energy-
efficient M-DNN models on edge processing hardware, we
leverage the advantages of state-of-the-art compression tech-
niques including knowledge distillation and low bit-width
quantization. We propose a hardware aware, to be specific
memory aware knowledge distillation and quantization tech-
nique that reduces the model size significantly while main-
taining the model accuracy based on application needs. We
assess HAC-POCD with UP-Fall detection dataset to establish
HAR as an edge machine learning application. HAC-POCD
is subsequently implemented onto GAPuino and Raspberry
Pi 4B to evaluate real-time performance on diverse resource-
constrained hardware. The primary contributions of this paper
are as follows:

• We propose HAC-POCD, an end-to-end system for mul-
timodal human activity and fall detection neural networks
implementable on resource constrained hardware. HAC-
POCD introduces multimodal data (two different direc-
tional images) to be adapted in tinyML models to improve
the application specific accuracies while maintaining
required performance metrics for edge POC hardware
deployments.

• We compress the M-DNN model with hardware aware
knowledge distillation and uniform 8-bit quantization to
reduce memory consumption and computational com-
plexity for edge POC hardware implementation.

• We implemented our inference model on two resource-
contrained hardware, GAPuino and Raspberry Pi 4B
boards and explored their energy efficiency with our
multimodal models.

II. PROPOSED HAC-POCD SYSTEM

A. Multimodal DNN Model Architecture Design

The method of building Multimodal Deep Neural Network
(M-DNN) models by adding different data modalities from
the physical world and pre-processing them to suit the neural
network formulation is shown in Figure 1 (a). The goal of
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Fig. 1. The flow diagram of proposed HAC-POCD system. We consider pre-
processed multimodal inputs for our proposed HAC-POCD. Proposed HAC-
POCD is the sequential combination of the steps shown in the diagram.

using multimodal data is to use complimentary information
from each modality for a particular learning activity, which
will ultimately result in a more robust representation and better
outcomes than if only one modality were used. In order to
do classification tasks, we developed a multimodal learning
problem that makes use of various data modalities. Due to
its proven superiority to other fusion techniques, we used
the Intermediate fusion methodology in this work to fuse
several modalities [19]. We created unimodal models for each
modality when creating the multimodal model. We emperically
decided the hyperparameters (filter size, number of filters)
for each unimodal network. To combine each modality, we
selected the unimodal networks with the highest accuracy.
Features are collected from each unimodal network, fused,
and sent to the fusion network. The classification output is
ultimately represented by the Softmax activation function as a
probability distribution of the last fully connected layer.

B. Memory-Aware Model Compression

Memory-aware model compression techniques reduce deep
learning models’ memory footprint without sacrificing perfor-
mance. Our proposed technique applies knowledge distillation
and quantization to M-DNNs, where a smaller student model
emulates a larger teacher model, minimizing memory needs.
The aim is to fit the model onto tiny processors’ on-chip
memories (L1 and L2 memories), considering several factors
for memory-aware compression.

• Memory Hierarchy and Sizes: Memory hierarchy of
the target hardware platform, such as on-chip SRAM,

off-chip DRAM, or Flash memory, is taken into account
by memory-aware model compression in HAC-POCD to
make sure that the compressed model can be successfully
stored and executed within the available lower level of
memory hierarchies for faster and more effective deploy-
ment.

• Knowledge Distillation: This approach involves training
a smaller student model to mimic the behavior of a
larger, more accurate teacher model. The student model
should have a smaller size than the teacher model, with
fewer layers, parameters, or connections, to reduce mem-
ory requirements and enable deployment on memory-
constrained devices. Different distillation techniques can
be utilized to transfer knowledge from the teacher to the
student model, such as soft targets, attention transfer, or
feature map matching. We selected soft targets to transfer
the teacher knowledge into student. This is achieved by
using the soft targets generated by the larger model as
training labels for the smaller model. The soft targets
are obtained by applying a temperature scaling factor,
T , to the output probabilities of the larger model, which
smooths out the peaks and makes the distribution more
spread out. More formally, let us denote the output
probabilities of the larger model as pi and the soft targets
as qi. The soft targets are defined as follows:

qi =
exp(zi/T )∑
j exp(zj/T )

(1)

where zi is the logit (unnormalized log-probability) out-
put of the larger model for class i. The temperature
scaling factor, T , controls the ”softness” of the targets,
with higher values of T resulting in softer targets. The
smaller model is then trained to minimize the Kullback-
Leibler (KL) divergence between its output probabilities,
p′i, and the soft targets, qi:

L =
∑
i

qi log
qi
p′i

(2)

where p′i is the output probability of the smaller model
for class i. The KL divergence measures the difference
between two probability distributions, and the loss func-
tion encourages the smaller model to learn a similar
distribution to that of the larger model.

• Compact Network Architecture: Models with reduced
memory footprints without sacrificing accuracy can be
created with the use of efficient and compact network
designs. To further compress the student model without
significantly sacrificing accuracy, we implemented depth-
wise separable convolution layers in place of standard
convolution layers.

• Hardware-Aware Quantization: Model memory foot-
print can be reduced by lowering the bit-width of pa-
rameters and activations. Hardware-agnostic quantization
methods like uniform or mixed-precision can help, but
may disregard hardware capabilities and limitations, po-
tentially yielding suboptimal performance. Contrastingly,

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 11,2024 at 16:45:32 UTC from IEEE Xplore.  Restrictions apply. 



Armv8-A
32b/64b CPU 

TLBL1
DCache

L1
ICache

Core 0
Core 1

Core 2
Core 3

L
2 

M
em

or
y 

Sy
st

em

Miscellaneous

Arm Cortex-A72 Microprocessor

Core 7

C
lu

st
er

 D
M

A

Gap8 Microprocessor

C
om

pu
te

 E
ng

in
e

Core 5

Core 4

Core 3

Core 2

Core 1

Core 0

Sh
ar

ed
 L

1 
IC

ac
he

Sh
ar

ed
 L

1 
D

C
ac

he

H
ar

dw
ar

e 
Sy

nc

Core 6 L
ow

-Pow
er M

C
U

Shared L
1 IC

ache
Shared L

1 D
C

ache

L
2 M

em
ory System

uD
M

A

(d)(c)

(d)

(a)

L1 Memory: 100 KB

L2 Memory: 512 KB

DRAM: 8 MB

GAPuino
(GAP 8 Processor)

On-Chip Memory

L1 Memory: 80KB

L2 Memory: 1 MB

DRAM: 4 GB

Flash: 32 GB

Raspberry Pi 4B
(ARM Cortex-A72

CPU)

On-Chip Memory

(b)

Sh
ar

ed
 L

1 
IC

ac
he

Sh
ar

ed
 L

1 
D

C
ac

he Shared L
1 D

C
ache

Fig. 2. (a) Hardware Architecture for GAP8 microprocessor. (b) Memory
Hierarchy of GAP8. GAP 8 microprocessor has L1 Memory of 100 KB (80
KB shared in compute engine + 20 KB for low power MCU.), l2 memory
of 512 KB and 8MB of DRAM (c) Hardware Architecture for Arm Cortex-
A72 microprocessor used in Raspberry Pi 4B. (d) Memory Hierarchy of ARM
Cortex-A72 CPU, which has L1 Memory of 80 KB (48 KB Instruction Cache
+ 32 KB Data Cache), L2 memory of 1 MB, DRAM of 4 GB and external
flash was 32 GB

hardware-aware quantization optimizes bit-width for pa-
rameters and activations without sacrificing accuracy,
considering target hardware. We employed this approach,
standardizing our model to uniform 8-bits, compatible
with our target hardware’s int8 support. Using Tensorflow
Lite’s post-training, we produced a model performing
solely integer arithmetic.

C. Deployment on Resource-Constrained Hardware

We used the GAPuino board, with a GAP8 [20] mi-
croprocessor, as our main edge deployment hardware. Its
nona-core 32-bit RISC-V cores, neural processor, and high-
performance make it suitable for long-lasting, battery-powered
edge computing and IoT applications. GAP8 incorporates
autonomous peripherals, an ultra-low-power micro-controller,
and a compute engine. The micro-controller has a standard
unit and fabric controller. It features L1 cache for the MCU
core, eight additional cores sharing similar data and instruction
caches in the compute engine. The entire chip shares a 512KB
L2 cache. Operating at different voltage and frequency do-
mains optimizes power use. GAP8’s architecture and memory
hierarchy are illustrated in figure 2(a) and (b). The GAPFlow
toolchain, which consists of NNTOOL and AutoTiler, is used
in this work, as shown in Figure 1(c). The DNN architecture
is modified by NNTOOL, providing AutoTiler compatibility
and changing weights for GAP8. AutoTiler generates C code
that is GAP8 compatible while algorithmically optimizing the
memory layout. Despite automation, human modifications of
the maximum stack sizes or the heap capacity are occasionally

required for particular DNNs. AutoTiler allocates all of the
L1 and L2 memory by default, which may result in heap
overflows, data corruption, and stack problems. By allocating
heap memory prior to DNN initialization, the Real-Time
Operating System (RTOS) of the GAP8 further exacerbates
the issue by decreasing the amount of space that is accessible.

To compare the performance of the HAC-POCD system
on an edge device, the Raspberry Pi 4B, which has an
Arm Cortex-A72 microprocessor, is used as a secondary
edge platform in this paper. Memory hierarchy and hardware
architecture are shown in figure 2 (c) and (d).

III. EXPERIMENTAL RESULTS AND ANALYSIS

Our study uses the UP-Fall Detection dataset [21], which
comprises multimodal data from 17 healthy individuals aged
18-24 performing various activities, including five types of
falls. The data was captured using wearable and ambient
sensors, and vision devices, with all datasets publicly available.
The subjects were recorded by two cameras, one lateral and
one frontal, both placed 1.82m above the floor. Subjects
performed falls from right to left, with cameras maintaining
equal distance from them throughout the experiments. In
this work, we use only the information from two cameras,
which run at 18 fps, from the dataset, taking advantage of
the multiple camera distributions. The activities performed
are: Falling forward using hand, Falling forward using knees,
falling backwards, falling sideward, falling sitting in empty
chair, walking, standing, sitting, picking up an object, Jump-
ing, Laying. Images are resized to 64x64 to reduce hardware
memory demands, and the data is split into 70% for train-
ing, 10% for validation, and 20% for testing. HAC-POCD
utilizes parallel CNN layers to process two image modalities,
employing MobileNet-V2 afor both of them to extract and
fuse features for multi-class classification. The teacher model,
illustrated in figure 3, adopts pre-trained ImageNet weights
and is trained for 200 epochs using categorical cross-entropy
loss and the Adam optimizer. The teacher model achieves 97%
accuracy in activity recognition.

Figure 4(a) presents HAC-POCD evaluation results. Single
modality data yields lower classification accuracies compared
to the uncompressed multimodal model. Incorporating mul-
timodal image data improves accuracy to 97%, while the
8-bit quantized multimodal model achieves 96% accuracy.
We then experimented to design the student model from
scratch incorporating memory aware knowledge distillation.
Our target was to compress the student model down to some
KB so that we could fit the model on the L1 and L2 caches
of the hardware we used for deployment. To this end we
experimented with different filter sizes, number of neurons in
dense layers and also replacing the 2nd and 3rd CNN layers
to their depthwise separable counterparts so that we could
achieve ultimate compression for the student model. Student
Model 5 achieves around 95.6% of accuracy with only 58
KB of model size. The experimental results are shown in
the figure 4(d). We selected this as our final student model
for inference which achieves 89.65× reduction in model size
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7% accuracy compared to unimodal (image 2) classification setting. Model
compression techniques reduce 1.4% accuracy of the multimodal setting. (d)
Experiments for memory-aware knowledge distillation.

from its teacher model at the cost of 1.4% reduction in model
accuracy.

IV. DEVICE IMPLEMENTATION RESULTS AND ANALYSIS

To evaluate the HAC-POCD approach, we deployed the
trained models on the GAP8 processor. Table I reports resource
utilization of HAC-POCD implemented on GAP8 processor. It
uses 47.5 KB of L1 memory and 178 KB of L2 memory which
is 44% of the available L2 memory. This inference model as
well does not require off-chip DRAM to store its weights and
activations which ensures the minimum latency.

INA 219

Raspberry Pi 4B

USB Power Meter

GAPuino

Arduino

(a) (b)

Fig. 5. (a) Raspberry Pi 4B power measurement setup. USB power
measurement device was used for raspberry Pi 4B. (b) GAPuino board
power measurement setup. INA219 and Arduino measure the GAP8 power
consumption.

TABLE I
RESOURCE UTILIZATION DATA OF HAC-POCD IMPLEMENTED ON GAP8

PROCESSOR

Resources L1 Memory L2 Memory DRAM
Available for Use

(KB) 52.7 400 8000

Inference Model
Utilization (KB) 47.5 (90%) 178 (44%) 0

TABLE II
IMPLEMENTATION RESULTS OF THE PROPOSED HAC-POCD AND

COMPARISONS WITH STATE-OF-THE-ART WORKS.

Architectures This Work [13] [22]

Application Activity
Recognition

COVID-19
Detection

Object
Classification

Vehicle
Clasifications

COVID-19
Detection

Modality Used Image+Image Audio+Audio Image+Audio Image+Audio Audio+Audio
+Audio

Operations (GOP) 2.38 - - 0.42 0.01

Edge Devices Raspberry Pi
4B GAPuino Raspberry Pi

4B
Raspberry Pi

4B
Frequency (MHz) 1500 175 1500 1500

Latency (ms) 9.95 49.20 1200 798 1240 980
Power (mW) 787 307.6 1700 959 1567 994
Energy (mJ) 7.83 15.13 2040 765.28 1800 974.12

Performance (GOP/s) 239.20 48.37 - - 0.33 0.01
Energy-Efficiency (GOP/s/W) 303.93 157.26 - - 0.22 0.01

Figure 5 (a) shows Raspberry Pi 4B power measurement
setup where USB power measurement device was used and
the figure 5 (b) displays the power measurement setup used
in this work for GAPuino board, using INA 219 sensor and
Arduino board.

Table II reports latency and power consumption of the HAC-
POCD implemented on GAPuino and Raspberry Pi 4B Boards.
Our Raspberry Pi implementation has energy efficiency of
303.93 GOP/s/W and our GAPuino implementation has energy
efficiency 157.26 GOP/s/W. We have also compared our both
the implementations with state-of-the-art multimodal models
deployed on resource-constrained hardware devices. As our
work targets hardware-aware model compression, both of
our case-studies outperforms previous implementations with
hardware-agnostic compressed models.

V. CONCLUSION

This paper presents HAC-POCD, a system that takes differ-
ent complimentary image data, designs DNN models, employs
model compression techniques including knowledge distilla-
tion and low bit-width quantization incorporating hardware-
aware design considerations to compress the models to fit
within lower levels of the memory hierarchy, resulting in re-
duced latency and enhanced energy efficiency while deployed
on resource-constrained tiny devices. To assess the effective-
ness of HAC-POCD, we evaluated with UP-Fall detection
dataset. Our results showed that, despite the utilization of
tiny inference model, we were able to attain an accuracy
of 95.6% accuracy for the human activity recognition task
using an inference model size of only 58 KB. Our compressed
model was deployed on two edge hardware platforms, namely
Raspberry Pi and GAPuino development boards, attaining
latencies within the range of a few milliseconds and power
consumption in the milliwatt range.
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