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Abstract—Safety, low-cost, small size, and Artificial Intelli-
gence (AI) capabilities of drones have led to the proliferation
of autonomous tiny Unmanned Aerial Vehicles (UAVs) in many
applications which are dangerous, unknown, or time-consuming
for humans. Deep Neural Networks (DNNs) have enabled au-
tonomous navigation while using captured data by drone sensors
as input to the model. Due to the extreme complexity of DNNs,
cloud-based approaches have been highly addressed in which
a drone is connected to the cloud and sends the data to the
cloud, and takes the result. On the other hand, emerging tiny
machine learning models and edge computing brings significant
improvement in energy efficiency and latency with respect to
cloud-based approaches. However, there is a trade-off in these
two implementations for model accuracy, latency, and energy
efficiency. For instance, applying tiny machine learning models
leads to lower latency but it sacrifices model accuracy in compar-
ison to cloud-based computing. To address these challenges, we
consider multiple models and introduce a new approach named
MLAE2 which applies Metareasoning approach for Latency-
Aware Energy-Efficient autonomous drones. Metareasoning mon-
itors parameters such as latency and energy consumption for
different algorithms and chooses the appropriate algorithm due
to the environmental situation changes. To Evaluate our approach
we extract the power consumption and latency for both cloud-
based computing and edge computing while deploying multiple
models on a tiny drone named Crazyflie. The experimental results
show that MLAE2 successfully meets the latency constraint while
maximizing model accuracy and improving energy efficiency.

Index Terms—Metareasoning, Tiny Machine Learning, Au-
tonomous Systems, Obstacle Avoidance, Drone Navigation.

I. INTRODUCTION AND RELATED WORK

Nowadays, Internet of Things (IoT) devices such as tiny Un-
manned Aerial Vehicles (UAVs) have attracted significant at-
traction which has led proliferation of autonomous systems [1],
[2]. Autonomous systems have enabled numerous indoor and
outdoor applications such as search and rescue, and source
seeking which are unsafe or impassible in some cases for
humans [3]. Machine Learning (ML) algorithms have shown
significant performance in such systems for autonomous drone
navigation and object detection [4].

Tiny drones have equipped with various sensors such as
LIDAR and cameras and the collected data by these sensors
can be fed to ML Neural Networks (NNs). Vision-based Deep
Neural Networks (DNNs) [3], [5], [4] or Reinforcement Learn-
ing (RL) [6], [7], [8], [9], [10] approaches can be deployed
on such tiny drones to enable them to perform complex
tasks. Due to the intensive computational requirements of
DNNs models, cloud-based approaches which provide un-

limited computational capacity have been highly addressed
in this area. However, cloud-based implementation requires
drone and cloud communication to transfer and process raw
data to the server and send back the result to the drone.
Therefore, bandwidth limitation leads to latency communica-
tion in cloud-based implementation which is challenging in
real-time applications such as autonomous drone navigation.
Moreover, security concerns and power consumption due to
communication are other challenges of such approaches. Edge
computing is a promising solution to solve these problems.

Resource-constrained devices like tiny UAVs have limited
sources of power and computation capacity. Therefore, for
edge computing, DNNs need to be optimized with regard to the
number of parameters and computations. These requirements
have led to the tiny machine learning system’s emergence
which brings DNNs on low-power and resource-constrained
devices. Tiny machine learning is able to significantly re-
duce energy and latency in comparison with the cloud-based
approaches as all the process has been done on the edge.
However, model optimization techniques like pruning [11]
and quantization [12] reduce the model size and lead to
the accuracy drop. On the other hand, since the application
space is continuously changing for edge devices it is vital to
prevent misprediction [13]. Therefore, both cloud-based and
edge deployment can be challenging in different situations.

Metareasoning as an anytime algorithm improves the agent’s
decision-making process based on the current situation [14],
[15], [16], [17], [18], [19], [20]. As a result, the drone which
is the agent can dynamically switch between cloud-based and
edge computing implementation while considering the power
consumption, latency constraints, and model accuracy metric.
Metareasoning as a higher-level unit monitors the environment
and provides the best algorithm in the current situation. In
this paper, we proposed MLAE2; a Latency-Aware Energy-
Efficient autonomous drone navigation that has applied a
Metareasoning approach to improving latency. In summary,
the main contributions of this paper are as follows:

• Edge implementation of tiny machine learning models on
a resource-constrained tiny drone.

• Considering cloud-based and edge computing advantages
for energy-efficient autonomous drone navigation.

• Applying metareasoning for latency-aware decision-
making drone navigation based on environment situation.

• Meeting both latency and power consumption constraints
in low-power real-time applications.
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Fig. 1: A high-level diagram of cloud-based computing and edge comput-
ing [21]. (a) In cloud-based computing, a DNN model is implemented on
the server and the drone constantly communicates with the server. In this
approach, the drone will be failed if the communication is interrupted or
disconnected. (b) A tiny model is implemented on a drone. The model has
lower accuracy due to the model size optimization.
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Fig. 2: Environment parameters are constantly changing during drone nav-
igation and can affect drone performance. For instance, drone and obstacle
distance (x1), drone and server distance (x2), and drone velocity (v).

II. PROPOSED MLAE2 APPROACH

In this section, we discussed the motivation behind the pro-
posed approach. Moreover, we illustrated the system overview
and explained the DNN model architecture. Then, we pre-
sented the MLAE2 approach for autonomous drone navigation.

A. Motivation

In this section, we give a motivational example to show
the effect of different vision-based DNNs approaches on
autonomous navigation. Figure 1 illustrates two potential
approaches; cloud-based and edge computing. Figure 1 (a)
shows how drone and server communicate together through
WiFi in cloud-based implementations. In this approach, the
communication latency will be increased when the drone and
server distance increases. On the other hand, in the edge
computing an optimized tiny machine learning model with
lower accuracy processes data shown in Figure 1 (b). Since
drone navigation is a real-time task, the inference latency for
processing data has to be less than the constraint latency.
However in cloud-based computing even though we have
higher accuracy, there is no guarantee of meeting the latency
constraint due to environmental changes. Figure 2 shows some
parameters that can cause the cloud-based implementation
to be failed. While the drone is flying in the environment,
distance from the obstacle (x1) or server (x2) can change
the communication latency and constraint latency, respectively.
Therefore, it is crucial to present an approach that guarantees
the latency requirements while maximizing accuracy.
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Fig. 3: A system overview of the proposed approach includes online and
offline phases. In the offline phase, power consumption and latency are
measured and calculated for both edge and cloud implementations. These
measurements along with environmental factors (like drone and server dis-
tance) go to the metareasoning level for parameter adjustment (like velocity
and obstacle detection margin) and algorithm choice in the online phase.

B. System Overview

To deal with the environmental changes challenges and meet
the power and latency constraints, we applied metareasoning.
Metareasoning by monitoring the changes provides better
decision-making for the drone while exploring the environ-
ment. Figure 3 depicts an overview of the proposed MLAE2
approach which includes two offline and online phases.

Offline Phase. In the offline phase, power consumption and
latency are measured. We measured computation latency and
power measurement when deploying the model on the tiny
drone. On the other hand, since most portion of the latency
and power consumption is related to the communication in the
cloud-based implementation, we considered communication
power and latency. To measure the latency, we extracted the
communication latency every five meters and store it in an
array. Then, we calculated the continuous latency with the help
of regression. We explained in more detail about the latency
communication in Section III-B.

Online Phase. The online phase includes three levels:
ground level, object level, and meta-level. In the ground level
unit, the drone flies in the environment and sends percep-
tion to the object level. In the object level unit, we have
two algorithms cloud-based and edge computing. This unit
monitors by the meta-level and the metareasoning approach
chooses one of the algorithms. The meta-level unit considers
latency constraint which is calculated based on the current
drone velocity (v) and collision detection margin (x1) and
compared it with communication and computation latency.
Then, it chooses the best algorithm that meets the latency
constraints. The algorithm will be executed in the object level
unit and the result will be sent to the ground level as an action
to be performed by the drone.

C. Vision-based Deep Neural Networks (DNNs)

The main application that we considered in this paper is
autonomous drone navigation. We used two energy-efficient
pre-trained models presented in [5]: A cloud-based model and
an optimized model for edge computing.
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Algorithm 1 Metareasoning for Latency-Aware Navigation (MLA)

1: tedge ← measure edge latency()
2: tcloud based, x2← measure cloud based latency()
3: tcurrent ← 0
4: tconstraint ← x1/v, s← x2/v
5: while (tcurrent < toperation) do
6: i = tcurrent/s
7: if tcloud based[i] < tconstraint then
8: tcurrent ← tcurrent + tcloud based[i]
9: else if tedge < tconstraint then

10: tcurrent ← tcurrent + tedge[i]
11: else
12: tconstraint ← min(tedge, tcloud based[i])
13: v = x1/tconstraint, s = x2/v
14: end if
15: end while

Cloud-based Model. Cloud-based model architecture is
based on mobilenetV1 [22] architecture with a width multiplier
of 0.5 and 97% accuracy. The input image size is 324x244,
the number of parameters is about 830K, and the performance
when deploying this model on an M1 mac pro is 14.8 GOPS.

Tiny Machine Learning Model. This model is a one-layer
residual block resnet [23] with 92% accuracy. This model is
optimized and quantized with 8-bit post-train quantization. The
image input size is 200x200 and it has about 100K parameters.

D. Metareasoning for Latency-Aware Energy-Efficient
(MLAE2) Drone Navigation

In this section, we presented the detailed implementation of
the proposed MLAE2 approach in this paper. Metareasoning
monitored the navigation process and guarantee that meet the
latency constraints while using energy-efficient DNN models.

Algorithm 1. Metareasoning for Latency-Aware Naviga-
tion (MLA) algorithm gets two energy-efficient models as the
input. Lines 1 and 2 measure the edge latency for computations
and cloud-based latency array for communication latency.
Lines 3 and 4 initialize current time tcurrent and constraint
latency tconstraint based on collision detection margin factor
x1. Moreover, it initializes s as a factor for increasing com-
munication latency in the cloud-based implementation. In the
online phase of the algorithm, lines 5-15, the meta-level unit
keeps monitoring latency and chooses cloud-based or edge im-
plementation that meets the constraint. Lines 12 and 13 show
how meta-level adjusts drone velocity v and communication
latency factor s if the latency requirements can not be met
on the current setting. For instance, if both communication
and computation latency does not meet constraint latency, the
meta-level decreases the drone velocity. Therefore, the drone
has more time to process the data before the collision.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the proposed MLAE2 approach a tiny drone
named Crazyflie [4] is used in this paper. Figure 4 (a) depicts
that Crazyflie is equipped with a gray-scale camera and an AI-
deck which includes a GAP8 with eight RISC-V processors.
For the cloud-based implementation, we used a MacBook Pro

Camera
Camera

GAP8

GAP8

GAP8

(c) (b) (a) 

Crazyflie 2.0
with AI-deck

GAP8

INA 219 Arduino

Camera

Fig. 4: (a) Crazyflie with AI-Deck, (b) drone power measurement setup [5],
[6], and (c) power measurement setup includes GAPuino with camera [24].

(a) (b)

Fig. 5: (a) Cloud-based experimental and calculated latency for the inference
phase while the cloud and drone distance is increasing. (b) Inference phase
power trace for three approaches: cloud-based, edge computing, and MLAE2.
Drone velocity (v) is 0.5 m/s and the collision margin (x1) is 15 cm.

with an Apple M1 Pro chip. We used two pre-trained models
in [5] as tiny machine learning and cloud models. Figure 4 (b)
and (c) depict two different setups for the power measurement
including a drone [5], [6] used in this paper and GAPuino [24],
[25], [26] which has the GAP8 processor [27]. After extracting
offline power consumption and latency, we used them in the
simulation while implementing the proposed algorithm in this
paper. We considered 20mv and 4ms oscillation for the offline
power and latency in the simulation.

B. Experimental Results

In this section, we explained inference latency measurement
in the offline phase of the proposed approach. Then, power
consumption and latency trace is presented with the MLAE2
approach implementation.

Offline Inference Latency. Figure 5 (a) illustrates latency
measurement for the cloud-based implementation when we
deployed the cloud model on a laptop and the drone com-
municated with the laptop through WiFi while flying. We
did the experiments every five meters which are shown as
experimental latency in Figure 5. Then, with the help of
regression, we plot a continuous latency to have the latency
for all of the distances. The results depict that with an increase
in distance between the drone and the server, the latency is
also increasing and after 35m the server will be disconnected.
We also measure the computation latency when applying edge
computing and the results show latency is equal to 40 ms.

Online Power Consumption Trace. Figure 5 (b) shows
the simulation results for online power trace by considering
drone velocity 0.5ms and collision detection margin 0.15m.
In this experiment, real power consumption is extracted while
deploying the cloud and edge model. The results show that the
MLAE2 approach switches to edge computing at 60ms oper-
ational time which the reason is explained in the following.
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(a) (b)
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Fig. 6: Online inference latency with different configurations regards to the velocity (v) and collision margin (x1) in the simulation: (a) v = 0.5m/s, x1 =
15cm, (b) v = 0.5m/s, x1 = 30cm, (c) v = 0.3m/s, x1 = 15cm, and (d) v = 2m/s, x1 = 15cm.

Online Inference Latency Trace. Figure 6 illustrates la-
tency trace and model accuracy of cloud-based, edge, and
MLAE2 approaches for 120ms operational time. In Fig-
ure 6 (a) cloud-based approach missed the constraint latency
by increasing the distance between the server and drone at
60ms while in the MLAE2 approach it switched to edge
computing. Figure 6 (b) shows that even by decreasing the
drone velocity to increase the latency constraint, the cloud-
based approach failed at 80ms due to the communication link
disconnection. However, the MLEA2 approach switches to
edge computing when the communication link is disconnected.
Figure 6 (c) and (d) depict the MLAE2 approach choosing
cloud or edge only, respectively. In conclusion, MLAE2 used
the cloud-based approach which has the higher accuracy as
much as possible and also met the constraint latency.

IV. CONCLUSION

In this paper, we proposed an approach named MLAE2
which applied Metareasoning for Latency-Aware Energy-
Efficient autonomous navigation. Two different DNN models
are considered in this paper; (1) one model with a high number
of computations and a high level of accuracy for cloud-based
implementation and, (2) a tiny machine learning model with
an optimized model size for edge computing. We calculated

latency constraints based on the distance between the drone
and the obstacles. In addition, we measured communication
latency when the drone is flying and the distance between
the server and the drone is increasing. The MLAE2 approach
maximized the accuracy of the obstacle detection model
for autonomous drone navigation while meeting power and
latency constraints. To evaluate the proposed approach, we
used a drone named Crazyflie with a low-power GAP8 RISC-
V processor to measure the latency and power consumption.
The results showed that the MLAE2 approach successfully
switches to edge computing when the communication latency
is higher than the constraint latency. Moreover, by applying
metareasoning, a higher level unit to monitor the drone and
changes in environmental situations, the drone could success-
fully navigate even if the communication link is disconnected
due to the high distance between the drone and the server.
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